УТВЕРЖДЕНО приказом Федерального агентства

приказом Федерального агентства по техническому регулированию и метрологии

от «06» июня 2023 г. № 1174

Регистрационный № 33301-20

Лист № 1 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства управления технологической автоматики, защиты и КИП УСО 6000

Назначение средства измерений

Устройства управления технологической автоматики, защиты и КИП УСО 6000 (далее – УСО 6000) предназначены для измерений и измерительных преобразований стандартизованных аналоговых сигналов (сигналов напряжения и силы постоянного электрического тока, сигналов термопар и термопреобразователей сопротивления), приема и обработки дискретных сигналов (в том числе счетные входы), формирования управляющих дискретных и стандартизованных аналоговых сигналов (воспроизведения выходных аналоговых сигналов напряжения и силы постоянного тока) на основе измерений параметров технологических процессов.

Описание средства измерений

УСО 6000 являются проектно-компонуемыми изделиями и включают в себя модули серий СР6000, в том числе СР6700 (далее — модули УСО), в составе и конструктивах (электротехнические шкафы, монтажные панели для установки в электротехнические шкафы, корпуса для монтажа на DIN-рейку и др.), определяемых характеристиками и параметрами подключаемого объекта управления при заказе потребителем.

В состав УСО 6000 могут входить:

- модули питания;
- колодки клеммные;
- модули ввода-вывода дискретные;
- модули интерфейсов;
- модули индикации, в том числе пульты технологические;
- модули процессоров;
- модули аналогового ввода-вывода и счетчика импульсов:
 - модули счетчика импульсов СР6715;
 - модули ввода аналоговые СР6731, СР6732, СР6734, СР6735;
 - модули вывода аналоговые CP6741;
 - модуль процессора СР6787 в части аналоговых входов.

Принцип действия измерительных модулей из состава УСО 6000:

- модуль счетчика импульсов CP6715 подсчет поступающих на входы импульсов от датчика;
- модули ввода токовые CP6731, CP6734, модуль процессора CP6787 в части аналоговых входов пропорционально-интегральное измерение падения напряжения на входном сопротивлении с помощью преобразователя напряжение-частота;
- модуль ввода аналогового сигнала CP6732 кусочно-линейная аппроксимация измеренного напряжения согласно номинально-статической характеристике термопары или термопреобразователя сопротивления;

- модуль ввода сигналов напряжения CP6735 пропорционально-интегральное измерение напряжения с помощью преобразователя напряжение-частота;
- модуль аналогового вывода CP6741 программно-управляемый ЦАП источника тока. УСО 6000 применяются в составе распределенных систем управления и сбора данных, используемых для автоматизации технологических процессов в различных отраслях промышленности.

Конструкция модулей УСО позволяет встраивать их в стандартные монтажные шкафы и другое оборудование, ограничивающее доступ к УСО 6000 и защищающее от воздействия внешней среды.

Модули ввода/вывода, модули интерфейсов, модули питания, модули процессоров и модули индикации бескорпусного исполнения устанавливаются в клеммные колодки, адрес модуля УСО определяется местом установки.

Модули УСО корпусного исполнения устанавливаются отдельно от клеммных колодок. УСО 6000 при работе в сети используют, в качестве стандартного, протокол обмена MODBUS RTU/TCP.

Примеры внешнего вида модулей УСО 6000 представлены на рисунках 1-3. Пломбирование УСО 6000 и отдельно модулей УСО 6000 не предусмотрено.

Рисунок 1 – Общий вид модулей УСО 6000 с двумя модулями процессора СР6782

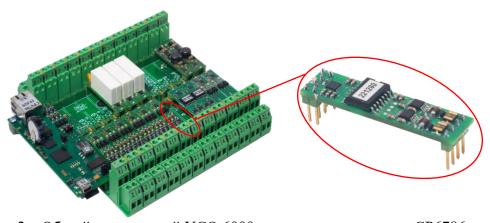


Рисунок 2 – Общий вид модулей УСО 6000 с модулем процессора СР6786

Рисунок 3 – Общий вид модуля процессора СР6787

Заводской номер УСО 6000 в виде цифрового обозначения наносится в паспорт УСО 6000 и на корпус УСО 6000 (при его наличии).

Заводские номера модулей из состава УСО 6000 в виде числового кода наносятся на корпус модуля (при наличии) или на плату модуля.

Нанесение знака поверки не предусмотрено

Модули аналогового ввода-вывода и счетчика импульсов УСО 6000 изготавливаются в исполнении УХЛЗ по ГОСТ 15150-69 с диапазоном температур рабочих условий эксплуатации от минус 40 до плюс 70 °C, а остальные модули УСО 6000 – в исполнениях УХЛЗ с указанным температурным диапазоном или УХЛ4 с диапазоном температур рабочих условий эксплуатации от плюс 1 до плюс 70 °C в соответствии с заказом.

Программное обеспечение

Программное обеспечение (ПО) УСО 6000 разделяется на 2 группы: встроенное программное обеспечение (ВПО) и внешнее, выполняемое модулями процессоров и системой верхнего уровня SCADA-системой EISA.

ВПО является метрологически значимой частью ПО, оно устанавливается в энергонезависимую память модулей в производственном цикле на заводе-изготовителе и в процессе эксплуатации доступ к ВПО отсутствует.

Конструкция модулей УСО исключает возможность несанкционированного влияния на ВПО и измерительную информацию (уровень защиты – «высокий» в соответствии с Р 50.2.077-2014).

Доступ к ВПО, чтение цифрового идентификатора возможно только на заводе-изготовителе с применением специального оборудования.

Проверка цифровых идентификаторов ВПО модулей проводится автоматически - модули с цифровыми идентификаторами, не совпадающими с рассчитанными по алгоритму CRC-16, автоматически блокируются встроенным программным обеспечением и исключаются из работы.

Внешнее программное обеспечение, содержащее инструментальные средства для работы с устройствами, не является метрологически значимым. Оно позволяет выполнять:

- конфигурирование и настройку параметров модулей, модулей процессоров (выбор количества используемых измерительных каналов, диапазонов измерений или воспроизведения сигналов, тип подключаемого измерительного преобразователя (датчика) и др.);
 - конфигурирование каналов связи;
- программирование логических задач для функционирования устройств на языках стандарта ГОСТ Р МЭК 61131-3-2016;
 - настройку интерфейса оператора, функций архивации данных и событий;
 - тестирование сконфигурированного устройства;

- установку паролей для защиты от несанкционированного доступа.

При обработке метрологически значимых параметров, исходные значения ВПО не изменяются и доступны одновременно с обработанными данными.

Исполнительная система модулей процессоров предназначена для сбора информации, управления модулями УСО 6000 и выполнения технологических программ систем автоматического управления и сбора данных, написанных на языках стандарта ГОСТ Р МЭК 61131-3-2016.

SCADA-система EISA является системой, которая работает в реальном времени и позволяет оператору, используя входящие в систему аппаратные и программные средства, обеспечивать автоматизированное управление, надежную и экономичную работу технологического оборудования.

Идентификационные данные ВПО модулей аналогового ввода-вывода и счетчика импульсов из состава УСО 6000 представлены в таблице 1.

Таблица 1 — Идентификационные данные ВПО модулей аналогового ввода-вывода и счетчика импульсов из состава УСО 6000

счетчика импульсов из	счетчика импульсов из состава УСО 0000						
Идентификационные	Значение для модулей						
данные (признаки) /	CP6715	CP6731	CP6732	CP6734	CP6735	CP6741	CP6787
Идентификационное наименование ПО	CSP-6715	CSP-6731	CSP-6732	CSP-6734	CSP-6735	CSP-6741	CSP-6787
Номер версии							
(идентификационный	1						
номер) ПО, не ниже							
Цифровой							
идентификатор ПО	по номеру версии						
Алгоритм							
вычисления	CRC-16						
цифрового							
идентификатора							
программного							
обеспечения-							

Метрологические и технические характеристики

Метрологические характеристики представлены в таблице 2.

Таблица 2 — Метрологические характеристики модулей аналогового ввода-вывода и счетчика импульсов из состава УСО 6000

импульсов	из состава УСО 6000		Пределы допускаемой	
Тип	Диапазоны преобразований анал- сигналов/разрядность цифровых с	основной приведенной погрешности, % от		
модуля	на входе	на выходе	погрешности, % от диапазона, ±	
1	2	3	4	
CP6715	Количество импульсов частотой до 10 кГц амплитудой до 24 В	16 бит	0,01 % * на каждые 10000 импульсов	
CP6731	от 0 до 5 мА 14 бит	0,15		
CP0/31	от 0 до 20 мА / от 4 до 20 мА		0,1	
	Сигналы от	термопар1)		
	ТВР (A-1) от 0 до +2500 °C			
	ТВР (A-2, A-3) от 0 до +1800 °C			
	ТПР (В) от +300 до +1820 °C		0.1	
	ТХКн (E) от -200 до +1000 °C		0,1	
	ТЖК (J) от -200 до +1200 °C			
	ТХА (K) от -200 до +1372 °C	16 бит		
	ТХК (L) от -200 до +800 °C	10 0111		
	ТНН (N) от -200 до +1300 °C		0,1	
	ТПП (R,S) от 0 до +1768 °C		0,1	
	ТМК (M) от -200 до +100 °C			
			0,2	
	ТМКн (Т) от -200 до +400 °C			
	Сигналы от термопреобра $Pt50 (\alpha = 0.00385 ^{\circ}\text{C}^{-1})$	зователей сопро	Тивления /	
	от -200 до +850 °C			
CD (722	Pt100 ($\alpha = 0.00385 ^{\circ}\text{C}^{-1}$)			
CP6732	от -200 до +850 °C		0,1	
	Pt500 ($\alpha = 0.00385 ^{\circ}\text{C}^{-1}$)			
	от -200 до +850 °C			
	Pt1000 ($\alpha = 0.00385 ^{\circ}\text{C}^{-1}$)		,	
	от -200 до +50 °C			
-	$50\Pi (\alpha = 0.00391 \text{ °C}^{-1})$			
	от -200 до +850 °C	16 бит		
	$100\Pi (\alpha = 0.00391 \text{ °C}^{-1})$	10 041		
	от -200 до +850 °C			
	Cu50 ($\alpha = 0.00426 ^{\circ}\text{C}^{-1}$)			
	от -50 до +200 °C		0,15	
	Cu100 ($\alpha = 0.00426 ^{\circ}\text{C}^{-1}$)			
	от -50 до +200 °С 50М (с. – 0.00428 °С-1)			
	$50M (\alpha = 0.00428 ^{\circ}\text{C}^{-1})$			
	от -180 до +200 °C $100M (\alpha = 0.00428 \text{ °C}^{-1})$			
	от -180 до +200 °С			
	01-100 д0 +200 С			

Продолжение таблицы 2

1	2	3	4			
	100H (α = 0,00617 °C ⁻¹) от -50 до +140 °C	16 бит	0,15			
	ТСП гр. 20 ³⁾ от -200 до +650 °C		0,2			
	ТСП гр. 21, $22^{3)}$ от -200 до +650 °C		0,1			
	TCM гр. 23, 24 ³⁾ от -50 до +200 °C		0,15			
	Напряжение					
	от -584000 до 584000 мкВ					
	от -292000 до 292000 мкВ					
CP6732	от -146000 до 146000 мкВ	16 бит	0,1			
	от -73000 до 73000 мкВ	10 011	0,1			
	от -36000 до 36000 мкВ					
	от -18000 до 18000 мкВ					
	Сопротивление					
	от 0 до 1200 Ом					
	от 0 до 600 Ом	16 бит	0,1			
	от 0 до 300 Ом	10 011	0,1			
	от 0 до 150 Ом					
CP6734	от 0 до 5 мА	1.4 Sur	0,15			
CF0/34	от 0 до 20 мА $/$ от 4 до 20 мА	14 бит	0,1			
CP6735	от 0 до 10 В	14 бит	0,1			
CP6741		от 0 до 5 мА/ от				
	14 бит	0 до 20 мА/	0,1			
	тт оит	от 4 до 20 мА	0,1			
		от 0 до 10 В				
CP6787	от 0 до 5 мА	14 бит	0,15			
C1 0/0/	от 0 до 20 м A / от 4 до 20 м A		0,1			

Примечания:

- * Для модуля счетчика импульсов CP6715 указаны пределы допускаемой погрешности в диапазоне температур рабочих условий эксплуатации;
- 1) без учета погрешности канала компенсации температуры холодного спая. Пределы допускаемой абсолютной погрешности канала компенсации температуры холодного спая с использованием, входящего в поставку, цифрового датчика температуры: ± 0.5 °C;
 - 2) по трехпроводной схеме измерений;
 - 3) градуировки по ГОСТ 6651-59.

Пределы допускаемой дополнительной приведенной погрешности модулей аналогового ввода-вывода УСО 6000 от изменения температуры окружающей среды на каждые 10 °C относительно температуры нормальных условий применения составляют 1/2 пределов допускаемой основной приведенной погрешности в диапазоне температур от плюс 1 до плюс 70 °C и равны пределам допускаемой основной приведенной погрешности в диапазоне температур от 0 до минус 40 °C.

Технические характеристики представлены в таблице 3.

Таблица 3 — Технические характеристики модулей аналогового ввода-вывода и счетчика импульсов из состава УСО 6000

импульсов из состава УСО 6000				
Наименование характеристики	Значение			
Рабочие условия эксплуатации:				
- температуры окружающей среды, °С	от -40 до +70			
- температура нормальных условий, °С	от +18 до +28			
- относительная влажность (без образования конденсата), %, не более	98			
- атмосферное давление, кПа	от 84,0 до 106,0			
Параметры электрического питания (кроме СР6787):				
- напряжение постоянного тока (внутренний источник питания), В	3,3			
Параметры электрического питания модуля процессора СР6787:				
- напряжение переменного тока, В	от 98 до 264			
- частота переменного тока, Гц	от 49 до 51			
- напряжение постоянного тока, В	от 138 до 372			
- напряжение постоянного тока (внутренний источник питания), В	3,3			
Потребляемая мощность, ВА, не более				
- модулей аналогового ввода-вывода и счетчика импульсов из состава				
УСО 6000 (кроме СР6787)	0,1			
- модуля процессора СР6787: без питания внешней нагрузки	2			
с питанием внешней нагрузки	15			
Габаритные размеры (ширина × высота × длина), мм, не более:				
- модулей аналогового ввода-вывода и счетчика импульсов из состава				
УСО 6000 (кроме СР6787)	11×25×46			
- модуля процессора СР6787	115×58×160			
Масса, г, не более:				
- модулей аналогового ввода-вывода и счетчика импульсов из состава				
УСО 6000 (кроме СР6787)	30			
- модуля процессора СР6787	350			
Примечание - габаритные размеры и масса УСО 6000 – в соответствии со				
спецификацией заказа.				

Знак утверждения типа

наносится на паспорта модулей аналогового ввода-вывода и счетчика импульсов из состава УСО 6000.

Комплектность средства измерений

Таблица 4 - Комплектность УСО 6000

Наименование	Обозначение	Количество
Устройство управления технологической	УСО 6000	*
автоматики, защиты и КИП		
Паспорт	СКБИ.468332.009 ПС	*
Руководство по эксплуатации	СКБИ.468332.009 РЭ	1 шт.
Примечание - * по заказу		

Сведения о методиках (методах) измерений

приведены в разделе 9 «Подготовка и порядок работы» СКБИ.468332.009 РЭ.

Нормативные и технические документы, устанавливающие требования к средству измерений

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ Р 51841-2001 Программируемые контроллеры. Общие технические требования и методы испытаний;

Приказ Росстандарта от 1 октября 2018 г. № 2091 «Государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot10^{-16}$ до 100 А»;

Приказ Росстандарта от 30 декабря 2019 г. № 3457 «Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы»;

Приказ Росстандарта от 30 декабря 2019 г. № 3456 «Государственная поверочная схема для средств измерений электрического сопротивления постоянного и переменного тока»;

ТУ 27.12.31-001-13095309-2006 Устройства управления технологической автоматики, защиты и КИП УСО 6000. Технические условия.

Изготовитель

Общество с ограниченной ответственностью «Специализированное конструкторское бюро программируемых средств и систем управления» (ООО «СКБ ПСИС»)

ИНН 2129003869

Адрес: 428033, г. Чебоксары, ул. Академика А.Н. Крылова, д. 13, помещ. 3

Телефон: +7 (8352) 400-300 Web-сайт: www.psis.ru E-mail: main@psis.ru

Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, Москва, вн. тер. г. муниципальный округ Очаково-Матвеевское

ул. Озерная, д.46

Телефон: +7 (495) 437-55-77, Факс: +7 (495) 437-56-66 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.